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PRESENTATIONS FOR UNIT GROUPS OF MODULAR 
GROUP ALGEBRAS OF GROUPS OF ORDER 16 

ROBERT SANDLING 

ABSTRACT. For a p-group G and the field F of p elements, let V denote the 
group of normalized units of the group algebra FG. Generators and relations 
are provided for V for each group G of order dividing 16. The presentations 
are sufficiently concise to permit transcription for machine calculation with V . 
Some applications are described. A theoretical method for obtaining presenta- 
tions for V is developed. It is most effective when p = 2, or when p = 3 and 
the commutator subgroup G' is of order 3. Implementation involves extensive 
calculation in FG. 

1. INTRODUCTION 

The unit group of the ring of matrices over a field is a well-studied and fa- 
miliar object, the general linear group. This example is, however, atypical: the 
structure of the group of units of a ring is usually elusive. Efficient presentations 
are rarely available. This paper develops techniques for obtaining a useful pre- 
sentation of the unit group of the modular group algebra FG, where F is the 
field of p elements and G is a finite p-group. Explicit presentations, obtained 
with the additional assistance of machine calculation, are given for some small 
cases. 

A more specific reason for seeking presentations in this context is the tra- 
ditional one of compiling data for use in formulating conjectures and testing 
hypotheses. The data gathered here have already shown their value. A condi- 
tion is established in [16] for the existence of a normal complement to G in 
the group of units of FG. It was motivated by the normal complements found 
in cases where IGI = 16 by the use of the presentations of this paper in con- 
junction with group theory packages (computers had been used earlier [12, 7] 
to study this question but not by means of presentations). In the same way, the 
hypothesis that independent subgroups of the unit group might be isomorphic 
to subgroups of G, conjecturally true in the case of the integral group ring of 
a finite group, was shown to be false for one of the groups of order 16 [14]. A 
further result for which these presentations have provided assistance is the fol- 
lowing: for nonabelian G, the nilpotency class of the group of units assumes its 
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minimum value, p, if and only if the commutator subgroup G' is of order p 
(the condition, equivalent to the vanishing of all (p + 1)-fold Lie commutators, 
is sufficient as, for a p-group G of nilpotency class 2, the nilpotency class of 
V(G) is less than or equal to the nilpotency class of the ideal I(G') (cf. [5, 1]); 
its necessity is shown in [11] (see also [17, 18])). Various other topics can be 
investigated by using presentations for small cases, for example, the problems 
with which [17] concludes. 

A further reason lies in the history of the subject. The theory of modular 
representations of finite groups is a rich one but it has little to say about p- 
groups in characteristic p. For this case, the earliest papers [22, 8, 21] remain 
the main sources of information. Moreover, the price of positive results often 
exceeds expectations: compare the very natural proof that an abelian group is 
determined by its integral group ring with the contrived one that a finite abelian 
p-group is determined by its modular group algebra (cf. [15]). The paucity of 
results suggests that theorems in this setting are few. It may be that the best 
that can be hoped for is a facility for answering questions about a specific group 
algebra. 

The unit groups of modular group algebras of p-groups are encountered 
outside as well as within group theory. For example, they occur in algebraic 
K-theory in the context of localization (some references appear in [14]). Pre- 
sentations for them were first obtained by Milnor (cf. [2, p. 602]) for cyclic 
p-groups. Specific questions in the case of dihedral and quaternion groups of 
order 16 were dealt with in an ad hoc manner in [20]. The construction given 
here provides a systematic manner of answering such questions. For the integral 
group ring, presentations for the unit group are sought in [4]. 

The group of normalized units in the case of a p-group is also a p-group. 
Structural features of a p-group can be calculated by machine, using software 
based on the Nilpotent Quotient Algorithm (NQA); CAYLEY [3], SOGOS [10], 
and GAP [13] are packages available publicly with this capacity. They apply 
to a p-group given in the form of a presentation by generators and relations. 
Thus, a unit group can be analyzed if a presentation of it is available. 

Section 2 describes two algorithms for obtaining a presentation in this con- 
text. They function in an inductive manner grounded on the abelian p-group 
case [ 14] and are most practical when p = 2, or when p = 3 and the commu- 
tator subgroup is of order 3. Section 3 lists those presentations obtained in this 
way which are small enough to convey in print, viz., for the groups of order 
dividing 16. The method has been successful in order 27 but the result is too 
complicated to include in a paper. With current NQA implementations, the 
method can be applied to groups of order 32 readily, order 64 probably, and 
order 81 possibly; improvements in, or alternatives to, NQA software could 
make larger orders accessible. 

Throughout, G will denote a finite p-group of order IGI = pn and F will 
denote the field of p elements, I = I(G) denotes the augmentation ideal of 
the modular group algebra FG. As I is the nilpotent radical of FG, 1 + I is 
a group; it is a p-group of order pIGH1 denoted by V = V(G) and called the 
group of normalized units (since U(FG), the group of all units of FG, is a 
direct product U(F) x V(G), it is only V(G) that is at issue). 

For a normal subgroup N of G, the exact sequence 
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1 --+N -G --+G -- I 

induces exact sequences of rings and of groups: 

O- I(N)FG -FG -FG --O, 
1 I 1 +I(N)FG - V(G) -* V(G) - 1. 

Group commutators are denoted [g, h] = g-lh-lgh, and longer commu- 
tators are left-normed, e.g., [x, a, b] = [[x, a], b]. Repeated commutators 
are abbreviated by [Q, kX] = [[Q, (k - 1 )X], X], where [Q, X] denotes the 
set of all commutators [q, x], q E Q, x E X (e.g., [x, 3a] = [x, a, a, a]); 
[Q, OX] denotes Q. The commutator subgroup of a group H is denoted H', 
and its center by C (H) . 

The free group on a set X of free generators is denoted by Fx. In a pre- 
sentation G 1_(X_ R), the elements of R are strictly speaking relators so that 
R C Fx; nonetheless, they will be written and described sometimes as relators, 
sometimes as relations. The minimum number of generators of a group H will 
be denoted d(H); the minimum number of generators of an FH-module M 
as module is denoted dH(M). 

The cyclic group of order n is denoted C, and the dihedral group of order 
2n is denoted Dn 

2. THE METHODS 

As the elements of V(G) are known explicitly and the multiplication of 
elements of G is also known, the multiplication table of V(G) is itself known. 
There is no more complete presentation for a group than its multiplication 
table! This presentation is of course impractical for the uses envisaged. More 
economical presentations can be found by putting together presentations for 
a nontrivial proper normal subgroup of V(G) and for its quotient. This will 
always be done here in the setting in which the quotient is itself of the form 
V(G), G a quotient of G, so that an inductive procedure can be developed. 

Systematic approaches are given for two situations. That treated first applies 
to the special case of a nonabelian direct product. The general nonabelian case 
comes next. Presentations for abelian p-groups are obtained in an entirely 
theoretical manner in [14]. 

Case 1. Direct products. It is among the groups of order 16 that direct products 
involving nonabelian groups are first encountered. The structure of the unit 
group in such a case is easier to describe than in the general case, especially for 
p =2. 

2.1. Proposition. Let H and K be finite p-groups, and let G = H x K. Then 
V(G) = (1 + I(K)FH) V(H), a semidirect product. 

If p = 2 and K _ C2, then 1 + I(K)FH _ FH as right FV(H)-modules 
and V(G) - FH. V(H), where FH is interpreted as an FV(H)-module by 
conjugation. 

In such a case there is less need for a presentation of V(G) as its decompo- 
sition as a semidirect product is often sufficient to provide any further informa- 
tion required about it. Nonetheless, for p = 2, a presentation for V(H x C2) 
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is readily available from the decomposition. It is obtained by combining a pre- 
sentation for V(H) with a presentation for the elementary abelian group FH 
and by indicating how V(H) acts on FH. 

2.2. Algorithm. A presentation for V(G), G _ H x C2, H a finite 2-group, 
may be obtained as follows: 

Step 1. Presentation for V(H). 
This is assumed to be available by induction as JHJ < JGJ. Write V(H) 

< XJR >. 
Step 2. Presentation for FH. 
Choose a set Y, Y n X = 0, in bijective correspondence with H. Then, 

in multiplicative notation, FH _ (YIS), where S = {[y, y'], y21y, y' E Y. 
Y 7+ Y'} - 

Remark. Y is chosen in correspondence with a basis of FH. The relations 
in Step 3 are simplified by choosing the basis to contain a basis for C(FH) = 
CFH(H) = CFH(V(H)); recall that the class sums of H give a basis for the 
center C(FH) of FH. 

Step 3. Action of V(H) on FH. 
Recall that this is action by conjugation. For y in Y and x in X, calculate 

the image in FH of the word [y, x] = y-lyx . Then choose a word uynx in 
the generators Y which maps onto it. Write T = {[y, x]ujy ly E Y. x E X}. 

Step 4. Presentation of V(H x C2). 

It is immediate from Proposition 2.1 that V(H x C2) _ (X, YJR, 5S T) . 
Remark. For the practical implementation of this construction all that is 

needed are programs for carrying out calculations in FH and V(H). My 
programs are in Fortran and are based on reference to the multiplication table 
of H obtained from CAYLEY or transcribed from [ 19]. 

This presentation is lengthy, owing to the large number of relations in S. 
It is possible to reduce the number of generators, but only at the expense of 
making the relations in S and T more complicated. Let V = V(H x C2). 

Then V/V' _ FH/FH . I(V(H)) x V(H)/V(H)'. This observation and the 
next lemma allow us to determine the minimal number of generators for V. 

2.3. Lemma. Let K be a finite p-group and M a right FK-module with I = 
I(FK). Then dK(M) = dimF (M/MI). 

2.4. Proposition. Let H be a finite 2-group and G = Hx C2 . Then d( V(G)) = 
dv(H) (FH) + d(V(H)), where FH is interpreted as an F V(H)-module by con- 
jugation. 

Case 2. The general case. We now turn to the problem of presenting V(G) in 
the general nonabelian case. Many aspects have close analogues in the special 
case. For example, the starting point is a central subgroup Z of G of order p 
and its associated sequence 

1 - 1 + I(Z)FG - V(G) - V(G) - 1, 

where G = G/Z and an overbar is used to denote the projection. If presenta- 
tions of V(G) and 1 + I(Z)FG are available, a presentation of V(G) may be 
obtained by the construction of a presentation of an extension, as recorded in 
[9, pp. 138-140]. 
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This is an approach well suited to induction. It can be assumed by induction 
that a presentation of V(G) is available (based ultimately on a presentation for 
the unit group of an abelian p-group [ 14]). The group 1 + I(Z )FG is known to 
an extent: it is, for example, of exponent p. For p = 2 or 3, more information 
is obtainable, and it is for these primes that the method given here is most 
practical. 

2.5. Lemma. Let G be a nonabelian finite p-group with central subgroup Z 
of order p. Then 1 + I(Z)FG is elementary abelian if and only if p = 2, or 
Z = G' and p = 3. 

2.6. Algorithm. A presentation for V(G), G a nonabelian p-group, may be 
obtained as follows: 

Step 1. Choice of Z and presentation of V(G), G = G/Z. 
Choose Z < G'nC(G), IZI = p. Define G = G/Z. We assume by induction 

that a presentation V(G) _ (XIR) is available together with a presentation 
G (Xo/Ro) with XO C X and Ro C R. (The condition on Z will enable us 
to obtain presentations for G and V(G) satisfying this property.) Write Fx 
for the free group on X and z3 for the projection Fx -* V(G) which gives 
the presentation (XjR) . 

Step 2. Presentation of 1 + I(Z)FG: S relations. 
Direct calculation of, for example, a power-commutator presentation is a 

practical undertaking in a sufficiently small case. We confine our discussion, 
however, to the case in which the hypotheses of Lemma 2.5 obtain. In this 
case, the subgroup 1 + I(Z)FG is isomorphic to the vector space I(Z)FG. 
Calculation in the subgroup is then a matter of linear algebra in FG, particu- 
larly straightforward for p = 2. My programs for this are in Fortran. 

Fix a section a: V(G) V(G) and define the homomorphism 72: Fx 
V(G) by setting 72(x) = U(ir3(x)) for each x in X. Then 7t2((R)Fx) - 

7(2(Fx) n (1 + I(Z)FG). In particular, Z = 7t2((Ro)Fxo) - nr((Ro))G. Choose 
ro in Ro such that i2(ro) generates Z. 

In I+I(Z)FG, calculate i2(ro), 7z2(R\{ro}), then ir2([R, X]), 7r2([R, 2X]), 
and so on; simultaneously, select a set of independent elements and express de- 
pendent elements of i2(R) in terms of them. Note that this process eventually 
ends with some 7r2([R, kX]) = 1 because of the nilpotent action of G. Com- 
plete the independent set to a basis for 1 + I(Z)FG. 

Let Y1 and Y2, Y n Y2 = Y1 nX= Y2nX = z, be sets of free generators, 
Y1 in bijective correspondence with the independent elements calculated above, 
and Y2 in bijective correspondence with the remaining elements of the chosen 
basis. Put Y = Y1 U Y2 . Then 1 + I(Z)FG has the presentation (YIS), where 
S = {[y, y'], yPjy, y' E Y, y 5$ y'} . Thus, there are m + (2) relations of this 

type, where m = rank(l + I(Z)FG) - iL-IGI. Write Fy for the free group 
generated by Y and r1 for the projection Fy -* 1 + I(Z)FG which gives the 
presentation. 

Step 3. Tietze transformations on R and S. 
In the previous step, a subset R1 of U{[R, kX]IO < k < oo} has been made 

available which is in bijective correspondence with Y1 and for which r2(R1) 
is a basis of i72(Fx) n (1 + I(Z)FG). By enlarging R, we will assume that 
R1 CR. 
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For each r in R\R1, 7r2(r) has been expressed as a linear combination of 
the elements of i2(RI) in Step 2. Let Vr be the corresponding product in 
the elements of R1 so that i2(rv-1) = 1 . Write R = {rv r E R\R1} with 
Ro similarly defined for Ro. Put R = R U {rP} U {[ro, xo]0xo E XO} The 
latter elements are adjoined in order that G is presented as (XoLRo U {rP} U 

{[ro, xo] xo E Xo}) ; this ensures that the condition imposed in Step 1 will obtain 
for any construction based on G. 

Next use the elements in R1 to replace appearances of elements of Yi in 
S, i.e., replace each y in Y1 by the element r in R1 corresponding to it. This 
results in a set S of relations in the generators X U Y2. 

Step 4. Action of V(G) on 1 + I(Z)FG: T relations. 
As in Algorithm 2.2, this action may be captured by specifying commutators. 

For each y in Y and x in X, express [ I (y), i2(x)] as a linear combination 
of the basis for 1 + I(Z) FG defined in Step 2. Let uy ,x be the corresponding 
product in the elements of Y. Put T = {[y, x]u -j ly E Y, x E X}. Under the 
assumption that JXJ = d( V(G)), there are md( V(G)) such relations. Lastly, 
use Tietze transformations to replace each y in Y1 by the element r in RI 
which corresponds to it. Again, this results in a set T of relations in X U Y2. 

Step 5. Conclusion. 
Collect the generating sets and relations from the previous steps to obtain the 

presentation V(G) _ (X, Y21R, S, T). 

This procedure can produce a great number of redundant relations. For 
example, it is common among the groups of order 16 for most of the relations 
S to be consequences of the relations T. In contrast, the presentations given 
here in the tables have relatively few relations. Each has been reduced from 
that given by the general procedure by experimentation. A subset of relations 
can be established as redundant if, on its omission, the group so presented is of 
the same order. Calculation of orders was accomplished by use either of a coset 
enumeration implemented in CAYLEY, or of the Nilpotent Quotient Algorithm 
implemented in SOGOS. 

Tietze transformations may be used to reduce the number of generators Y2 
by reference to the module structure of 1 + I(Z)FG as in the discussion in 
the direct product case; it is a module by conjugation for the group G or even 
i2(Fx). These considerations prompt the following analogue to Proposition 
2.4. 

2.7. Proposition. Let Z be a central subgroup of order p of the finite p-group 
G. Assume either that p = 2 or that p = 3 and Z = G'. Let G = G/Z, and let 
W be the subgroup of V(G) generated by the inverse images of a minimal set of 
generators of V(G). Let M1 denote the submodule W n (1 + I(Z)FG) of the 
W-module M = 1 + I(Z)FG (via conjugation). Then d(V(G)) < dw(M/MI) + 
d(V(G)). 

2.8. Illustration. The dihedral group G of order 8 offers an illustration of the 
method of reasonable size. We sketch it here with less formality of notation. As 
;(G) = G' is of order 2, Z = ; (G), so that 1 +I(Z)FG is of rank 4 and G is el- 
ementary abelian of rank 2. With G = (x, yIx4, y2, [X, Y] = X2) , we have G = 

(x Ylx2 v2 [Y x y] . From [14], V(G) = (x. v. ax y2 a2, [Y V], [a, x1* 
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[a, y]),where a = 1 + (x - 1) (y - 1) = x + y- + )Ty. The subset X of generators 
for V(G) consists of the three elements x, y, and a = x + y ? xyv. The preim- 
ages of the relators are: x2, y2 = I, a2 = X + X2?+ X3 + y + Xy + X2y + X3Y, 
[X, yA = X2, [a, x] = 1 +y +xy +x2y +X3y, [a, y] = 1 +x +x3+XY +X3Y . 
Of these, X2, a2, [a, x], and [a, y] are independent. They form a basis of 
1 + I(Z)FG, so that there are no generators Y2 in this case and d(V(G)) = 3. 

The relations R are: y2 l, [xXy]X2, X4 = 1, [X2, X]1 [X2, yA 
1 . There are ten relations S: [x2, a2] = 1, X4 = 1, etc. There are 12 relations 
T. which turn out to express the fact that 1 + I(Z)FG is central in V(G); for 
example, [a2, x] = 1, so that Ua2 may be taken = 1. The six commutator 
relations in S are clearly consequences of T. Further experimentation reduces 
the 27 relations of the general procedure to the ten which appear in the table 
for this group. 

3. THE GROUPS 

The constructions described in the previous section have been carried out for 
all the nonabelian groups of order dividing 16 and for the nonabelian group of 
order 27 and exponent 9. The presentations obtained for the 2-groups are given 
in this section in tabular form. That obtained for the group of order 27 has not 
been included, it being too complicated for deductions by hand and too lengthy 
for manual transcription to machine. The minimal number of generators for it 
is 9, and 61 relations are used; this had been reduced from the 337 of Algorithm 
2.6 by experimentation. 

In contrast, the presentations obtained for the 2-groups are adequate for 
the purposes mentioned. As such, there was little reason to seek to reduce 
systematically all redundancy from the list of relations. Nonetheless, some effort 
has been expended in this direction and it is unlikely that much redundancy 
remains. 

We begin by giving presentations in Table 1 (see next page) for all the non- 
trivial abelian 2-groups in the range. The information is merely that of [ 14] for 
these special cases. However, various of the groups of order 4 and 8 arise as 
the groups G, so that the particular information is convenient here. The other 
groups appear for completeness. 

Key for Table 1. Data sufficient for specifying a presentation of V(G) for a 
given abelian group G is given in a set of a few rows organized into columns. 
A set begins with the number of G in the listing in [6] in the first column. 

G column: This gives the decomposition of G as a direct product of cyclic 
groups. 

d(G) column: This gives the minimum number of generators of G. 
Generators column: Standard names are used for the generators. G= (gi, ... 

gd(G)), where g1 = x, g2 = y, g3 = z, and g4 = w . They are in the same or- 
der as that indicated in the G-column, i.e., (g1) > 0(g2) > ... ?* 0(gd(G)). This 
information is given more explicitly in this column by listing each generator to 
the right of its order; thus, " 2: x, y " is to be interpreted as o(x) = o(y) = 2. 

V(G) column: This gives the decomposition of V(G) as a direct product of 
cyclic groups. 

d(V) column: This gives the minimum number of generators of V(G). 
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Further generators column: The generators of the factors in the decomposi- 
tion of V(G) are, first of all, the generators of G, and then those indicated 
in this column. The latter are given with their identification with group ring 
elements, the format for which is based on that of the Jennings basis rather than 
that of the group basis, " a: 1 + (x - 1) (y - 1) " means that the free generator a 
maps onto the group ring element 1 + (x - 1) (y - 1) (= x + y + xy in charac- 
teristic 2) in the presentation for V(G). The convention adopted in the fourth 
column gives the order of all named generators here. This data, together with 
the obvious commutator relations, which are omitted, specify the presentation 
of each V(G), IGI < 8. For groups of order 16, the extra generators and power 
relations are not included in the table because of their length. They can be de- 
scribed in common via the Jennings basis: for each of these groups, there is a 
sequence of elements xI, x2, etc. such that the omitted generators correspond 
to elements among those of the form 1 + HlxeQ(X - 1), Q C {xl, X2, ...15 
IQI > 2. For each case, the table gives three items of information: the sequence 
X1, X2, ... ; the subsets Q not to be used for generators; the elements corre- 
sponding to generators of order > 4 (most subsets determine generators and 
most of these are of order 2). For example, for group 16.4, there is a generator 
of order 4 corresponding to the element 1 + (x - 1)(x2 - 1) = 1 + (X - 1)3; there 
is no generator corresponding to the subset {x2, x4} but all the other subsets 
give generators or order 2, e.g., there is one for {x, x4, y} corresponding with 
1 + (x - l)5(y - 1). 

Tables 2 and 3 describe V(G) for G nonabelian of orders 8 and 16. Again 
the code numbers of [6] are used for identification. Table 2 describes the groups 
G. 

TABLE 2. Group descriptions 

8.4 D4 dihedral 

8.5 Q quaternion 

16.6 D4 X C2 

16.7 QxC2 

16.8 C4 x C2 extended by 
I 

? 

16.9 C4 x C2 extended by 
I I 

16.10 C4 extended by an element of order 4 acting by inversion 

16.11 C8 extended by an involution centralizing C4 

16.12 D8 dihedral 

16.13 SD16 semidihedral 

16.14 Q16 generalized quaternion 
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Table 3 (see pp. 698 and 699) indicates the presentations of V(G) in a 
format analogous to that of Table 1. In several of the cases, the unit groups 
have presentations identical except for defining relations of the original group; 
in each of these cases, the data are merged into the same set of rows. For groups 
16.6, 7, the presentation of Algorithm 2.2 is used so that the interpretation of 
the data here is somewhat different from that for the other groups. 

Key for Table 3. The first column gives not only the code number of G but also 
the minimum number of generators of V(G) (in parentheses). 

G column: This gives a presentation for G in free generators x, y, and, 
occasionally, z . As in Table 1, orders of elements are indicated by the notation: 
" q: W1, W2, etc.," meaning that o(wi) = q. The fact that elements commute 
is also indicated by a shorthand: " v: wI, W2, etc.," meaning that [wI, v] = 
1, [w2, v] = 1, etc. In cases where data for different groups have been merged, 
the relevant variations in relations are given in order, separated by commas, 
e.g., in 8.4, y2 = 1, while, in 8.5, y2 = X2. 

Further generators column: For all but 16.6, 7, this column lists, one per 
row, the k elements VI, ..., Vk of V(G), k = d(V(G)) - d(G), identified 
with free generators fi, ... ., f. Standard names are given to these generators: 
fi = a, f2 = b, f3 = c, f4 = d, f5 = e. Together with the generators of 
G, VI, .-. , Vk give a minimal generating set for V(G) . The last d(G) - d(G) 
generators comprise Y2 . Such are present only in the cases 16.8-10 and in each 
case split off as a direct factor (e) of order 2; this is indicated in the table by the 
entry (DFT) after the element corresponding to e, and no further information 
about relations involving e is given. 

For 16.6, 7, generators al, ... , a8 are given corresponding to a basis of 
FH, H = (x, y) . These, together with the generators given in 8.4, 5 for 
V(H), comprise the generating set used for V(G); note that it is not minimal. 

Power column: Relations of the form Wq = 1 appear in this column accord- 
ing to the convention q : w used earlier. 

Commutator column: Relations of the form [wI, w2] = 1 appear in this 
column according to the convention W2: W1 used earlier. For economy, this 
column is usually subdivided into two columns. 

For 16.6, 7, the relations for V(H) are given in the 8.4, 5 row of the table. 
All relations additional to those for V(H) necessary for the presentation of 
V(G) are given in this column; each gives the value of a commutator of two of 
the generators in the usual notation for a relation. 

Other column: For all of the groups apart from 16.6, 7, the remaining rela- 
tions for the presentation of V(G) appear here in unabbreviated notation. 

Illustration. For the dihedral group D4, the table means that, for D4 - (x, y 
x4 = 1 = y2, [X, y] = X2), V(D4) has three generators x, y, a, corresponding 
to the group ring elements x, y, and 1 + (x - 1) (y - 1) = x + y + xy, and can 
be defined by ten relations in them. Its presentation is V(D4) - (x, y, a I x = 
y2 [a, X]2 = [a, y]2 = a4 1[x, y] = X2, [a2, x] = [a2, y] = [a, x, y] = 
[X2, a]= 1). 
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